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Abstract:

The goal is to develop an inverse model capable of simultaneously estimating the

parameters appearing in an air pollution model for an instantaneous point source, by using measured

gas concentration data.

The approach taken was to develop the inverse model as a non-linear

least squares estimation problem in which the source term is estimated using measurements of
pollution concentration on the ground. The statistical basis of the least squares inverse model allows
quantification of the uncertainty of the parameter estimates, which in turn allows estimation of the

uncertainty of the simulation model predictions.
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1. INTRODUCTION

Decision-making about off-site emergency
actions in case of an instantaneous gas release
incident needs real-time forecasting of the
concentration of gas in the atmosphere. The
accuracy associated with forecasting of the
concentration of gas in the atmosphere is highly
dependent on source term parameters such
as the location, timing and total amount of
release. Inaccuracy in the model source term
can lead to differences between estimated and
actual concentration.

The process of deducing the source term
from observations of airborne concentration
reduces to estimating parameters in an air
pollution model. Several papers [Edwards,
1993; Kibler, 1977; Mulholland, 1995; Sohier,
1997] have been published in the area. They
use different models, but all depend on an
intelligent first guess of the parameters and
concentration measurements at many locations.

We report on a methodology for identifing
the source term based on a non-linear least
squares regression and linear regression coupled
with the solution of an advection-diffusion
equation for an instantaneous point source.This
method only depends on the initial guess of the
release time and the approximate value of this
time can be easily calculated. Furthermore, we
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find that reliably estimating the parameters
requires concentration measurements at a
minimum of three downstream locations.

2. AN ADVECTION-DIFFUSION
EQUATION

A Cartesian co-ordinate system (X,Y,Z) is
used with the X-axis orientated in the direction
of the mean wind, the Y-axis in the horizontal
cross-wind direction, and the Z-axis in the
upwards vertical direction. Instantaneous gas
release with a total mass release () is assumed
to occur at time ¢t = 0 at a point (0,0, H) which
is at a height H above the ground. The gas
particles are subsequently blown by a wind with
mean velocity u = (U, 0,0). The gas molecules
move with the wind in the X direction at the
same time as being dispersed by turbulence in
the atmosphere. For a cloud of gas particles,
the mass concentration C(X,Y,Z,t) in time
and space is governed by the equation of mass
conservation:

ac
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where the pollutant mass flux per unit area q is
given by:
(2)

where C'u is the mean mass advection by the
wind and K is a dispersion tensor, which is as-

q=Cu-K®VC




sumed to be of the form:

K, 0 0
K= 0 K, 0
0 0 K,

where K;, Ky, K, are eddy diffusivities in the
X, Y and Z directions respectively. Substitu-
tion into Equation (2) gives an expression for
the mass flux vector:
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Substitution of the expression for q into Equa-

tion (1) gives:
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where C is concentration of the contaminant.
Equation (4) is to be solved subject to initial
and boundary conditions. The initial conditions
are represented by:

C(X,Y,Z,0) = Q§(X)6(Y)6(Z — H), (5)

where 4 is the Dirac delta function, which has
the following properties:

6(X)=0for X #0 and / (X)X =1.

The pollutant concentration approaches zero far
from the source in the lateral direction and high
above the ground and there is zero vertical flux
through the ground surface. The boundary con-
ditions are of the form:

C—o0a X, Y =5 +00,Z - 0

(6)

%(X,Y,O,t) =0

3. SOLUTION OF AN ADVECTION-
DIFFUSION EQUATION

Theoretical models are available to determine
the wind velocity U, and the eddy diffusivities
K., K, and K, as functions of the vertical
distance Z [Huang, 1979]. However, the
resulting functions are such that they make
the analytical solution of Equation (4) under
appropriate boundary conditions extremely
difficult. To simplify the model here, it is
therefore assumed that u, K;, K, and K, are
constants. Equation (4) then becomes:
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Figure 1. (a) Concentration distribution on

the ground (b) Concentration distribution on

the ground directly downwind of the release
(onY =0)

which is to be solved subject to the initial and
boundary conditions (5) and (6). The solution
of (7) can be derived using Laplace and Fourier
transforms and is:

Q - (XJ(U:)z _4§2¢
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Equation (8) is similar to the Gaussian model
for an instantaneous point source [Seinfeld and
Pandis, 1997]. Further, if we define 02=2Kt,
02=2Kyt and 02=2K,t, the two models are
identical. = Here the o’s are the standard
deviations of the concentration distribution in
the X, Y and Z directions. Therefore, there
is a relation between the standard deviation of
spread that arises in the Gaussian distribution
and the eddy diffusivities in the advection-
diffusion equation. The ground distribution
of the concentration predicted using Equation
(8) for the data values Q=1000 kg, K, = K,
= 12 m?s7!, K, = 0.2113 m?s7!, t = 100
s are shown in Flgure 1. Figure 1(a) shows
the concentration distribution in the X — Y
plane on the ground Z = 0, while Figure 1(b)
shows the concentration distribution directly
downwind (on Y = 0), 100 seconds after the
release.

4. INVERSE MODELLING

Inverse modelling is the extraction of model
parameter information from data. It is a
discipline that provides tools for the efficient
use of data in the estimation of constants
appearing in the mathematical models. In this



inverse modelling problem, the structure of
the equation is known; measurement of the
outputs, time () and concentration (C), are
available. Some of the parameters are unknown.

The aim of this section is to obtain the
best or optimal estimate of the parameters (e.g,
mass release @, lateral eddy diffusivity K,
source height H, distance of the source from
measuring point X, Y and time of the pollu-
tant release relative to the measurement time)
appearing in Equation (8) from measurements
made at some position(s). The value of K,

can be found by using the theoretical model.

K, = aZ"™ [Yeh, 1975], and calculating a value
at some reference height (a and n are constants
depend on atmospheric conditions.

Taking natural logarithms of both sides of
the Equation (8) when Z = 0 (i.e. for concen-
tration on the ground) gives:
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where f = In(C), T+ ty = t, to is the (un-
known) time after pollutant release when the
measurement clock was started and T is the
time (known) on that clock. It has also been
assumed that lateral eddy diffusion in the X
and Y directions are equal, K, = K,. In
simple terms, Equation (9) can be written as
f(T';b) where T is the independent variable
and b = [Q,H,X,Y,K;,t] is a parameter
vector.

4.1 Sensitivity Coefficients and
Linear Dependence

Sensitivity coefficients are very important
because they indicate the magnitude of change
of the response f due to perturbations in the
values of the parameters. They also provide
information about which parameters can or
cannot be estimated simultaneously. They are
defined by the first derivatives of f with respect
to each parameter. The parameters can be
simultaneously estimated without ambiguity
if the sensitivity coeflicients over the range of
observations are not linearly dependent. Linear

dependence occurs when the relation:
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for each of the observations f; with not all o
equal to zero [Beck, 1977]. If we set a5 = ag
= 0 and a1, az , a3, a4 are certain non-zero
constants, it can be showned that
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This shows that the parameters in Equation
(9) cannot be estimated simultaneously, i.e.
parameters cannot be estimated simultane-
ously if the data is collected at one location.
Therefore measurements at more than one
location are needed to estimate the parameters.
Experimental results in Section 5.2 show that
measurement locations cannot lie on a straight
line on the ground to get good parameter
estimates. Therefore concentration measure-
ments taken from three different locations on
the ground were considered to estimate the
parameters in the air pollution model given by
Equation (8).

Now consider an experiment in which
data are generated at three different loca-
tions on the ground P, = (X,,Y%,,0), P, =
(Xo+z1, Yo+y1,0) and P3 = (Xo+x2, Yo+y2,0).
Therefore Equation (9) will become:
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where (z,y) = (0,0), (z1,y1) or (z2,y2). This
may be rearranged in the form:

1
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4.2 Computation of Parameters

The output of Equation (10) is a logarithm
of pollution concentration as a function of
time, space and a set of unknown parameters.
On the other hand, pollution concentration
measurements are available. The method, then,
is to find estimates of the unknown parameters
that best fit the measured data. If f is the log
of measured concentration and f is the log of
modelled concentration, the error in the fit of
the measurement and the model, 4, is:

3n
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where 3n is the number of measurements and

b= [,Boaﬁlaﬂ%/j&ﬁ‘iato]'

For the best match b must be varied to
minimise 4. This result can be achieved
using the Gauss-Newton method. Essentially,
the procedure is iterative and requires good
starting value estimates for all the parameters.
If the starting values are not reasonably good,
the iteration may not converge or may converge
to a local minimum.

An alternative approach to this problem
of parameter estimation is now considered.
This is to transform both the data and the
function so that there is a multiple linear
relationship between the transformed data and
transformed unknown coefficients within the
minimisation iteration loop. This procedure
requires a good starting value of o only. This
can be calculated using the method outlined
later in this section. If the data values are
transformed by letting:

3 z y
W= = T t :——W =
f+211'1( + O)aWI T+t0, 2 T-}-to’
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then the Equation 10 becomes:
W = o + B1W1 + BoaWa + Bs W3 + B Wy (11)

The step then is to form estimates of 3’s using
multiple linear regression that best fit the mea-
sured values W;. If W; are the modelled values,
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the error § in the fit of measurements and the
model is:

(12)

3n
> (Wi - Wi)2
i=1

For the best match #y must be varied in the
region [Ty — €, Ty + €] to minimise §. Here Tj
is the approximation of to and € is an error.
This minimisation result can be achieved using
fmin in MATLAB. For the new to value o, 1,
B2, B3 and B4 can be calculated from Equation
(11). Then, by substituting these values into
Equation (10), all the required parameters
H,Q, Xo,Y and K; can be calculated.

4.3 Calculations of Initial Guess ¢;

Concentration distributions at the points

P, and P, can be written as:
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where t = tg + T, X,=Xo, Xp=Xo+11, Y=Y,
and Y;=Yp+y;. Dividing Equation (13) by
Equation (14) and then differentiating w.r.t. T
followed by taking natural logarithms of both
sides gives:

F’ F 2121
1nF+TF——tQF—4Kz
where F' = g—:; and F' = £ The graph of

F'

InF + T FT’ plotted against & is a straight
line, with a gradient of n = —tg and intercept
= — 2% (when T = 0). Note: The logarithms
of concentration distributions at P; and P
have to be smoothed using polynomial fits for

noisy data before applying the method.

5. MODELLING APPLICATION
5.1 Source Term Estimation

To illustrate this inverse modelling appli-
cation, consider an input of environmental data
generated from an instantaneous point source
of strength 1000 kg located at (0, 0, 20 m)
in the Cartesian co-ordinate system. Figure
2 shows the concentration signal against time
T at the points P, P, and P;, where P,
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Figure 2. (a) Concentration signal at the
points P, P, and P; on the ground with no
noise, (b) Concentration signal at the points

Py, P, and P; on the ground with noise of 5%.

(5000,100,0), P, = (5480,230,0) and P; =
(5130,580,0), i.e. P;, P, and P; are on the
vertices of a equilateral triangle of side 500 m.
For illustrative purposes K, and U are taken
as 0.211 and 1.80 respectively. The results of
the source term estimation for the pollution
concentration in Figure 2(a) are tabulated in
Table 1. Then random relative noise of 1%, 2%,
3%, 4% and 5% were added to the simulated
signal and the calculation of error in the source
term was repeated for one hundred times for
each case. Average error values of parameters
are tabulated in rows 1 to 5 of Table 2.

5.2 Measurement Locations

The results of numerical experiments show
that the accuracy of the parameter estimates
depends on the location of the pollution mea-
surement points. To analyse the effect three
cases were considered.

(i) All three stations P, P, and P; lie on a
straight line. (In Figure 4, P; is on the line
PP .
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Figure 3. (a) Error in @ Vs distance between
points, (b) Error in X, Vs distance between
points.

(ii) Stations Pj, P and Pj are on the vertices of
a perpendicular isoscles triangle. (In Fig-
ure 4, @« = 90° and L; = Ly.)

(iii) Py, P, and P; are on the vertices of an
equilateral triangle. (In figure 4, a = 60°
and Ly = Ly.)

In the first case whatever the values of 8, Ly, Lo
and Ls, the calculated parameter values were
wrong even in the case of perfect simulated data.
The error in parameter estimates () and X of
the other two cases are plotted against the dis-
tance between the points in Figures 3(a) and
3(b) respectively. In each case, parameter val-
ues were calculated when the angle () between
PP, and X-axis is equal to 0°,15° and 30°.
The above experiments demonstrate how the
distance and angle between the measurement lo-
cations affects the accuracy of the source term
estimation results.

6. SUMMARY AND DISCUSSION

The goal of the work presented here was
to develop an inverse model capable of simul-
taneously estimating the parameters appearing



Table 1. Source term estimates
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Table 2. Percentage errors in calculated
parameters of the source term, for various
relative noise levels.

Noise t9 K, Xo Yo Q H
1% 0.8 07 08 04 27 85
2% 16 14 15 07 58 186
3% 25 22 24 11 80 252
4% 31 27 29 16 110 33.0
5% 43 3.7 40 19 123 33.8

Y

Wind direction

Figure 4. Locations of the points P;,P, and
P; on the ground.

in the air pollution model for an instantaneous
point source. The approach taken was to
develop the inverse model as a non-linear
least squares estimation problem in which the
source term was estimated using pollution
concentration measurements on the ground.
The statistical basis of the least square inverse
model allows for quantifying the uncertainty
of the parameter estimates, which in turn
allows for quantifying the uncertamty of the
simulation model predictions.

First in the process, it has been demon-
strated that data from at least three spatial
locations are needed to reliably estimate the
parameters in the model. Secondly, we for-
mulated the inverse model as a least squares
minimization problem, and then we tested the
methodology using artificial data generated
from the forward problem.

The accuracy of the calculated parameter
values varies with the distance between the
measurement locations. Therefore the optimal
design of the locations for pollution measure-

ment on the ground is important. This is one
possibility for improvement of the model.

This paper is a report of an initial study
using both linear and nonlinear least squares
estimation techniques for calculating source
term parameters from an inverse model. The
next phase of this study is to find estimates
of source terms of pollution from steady and
non-steady point sources of unknown time
duration.
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